

Li-Ion Battery Design

International Distribution Seminar April 2014

Saft MP176065 INT Design

Built-in protection devices ensure safety in case of:

- Exposure to heat
- · Exposure to direct sunlight for extended periods of time
- Short circuit
- Overcharge
- Overdischarge

Safety: high level via redundant features

- Level one : fail safe charging devicelimited current and voltage
- Level two: protection circuit (able to re-set)
- Level three: mechanical current breaker + thermal fuse
- Level four: 3 layers separator (shut down)
- Level five : mechanical rupture disk (burst vent)

Protection Circuit

- Customized to Each Battery Pack but based on standards
- Monitor cells and opens circuit if it detects:
 - > Over Voltage above 4.25 V on any Cell
 - > Over Discharge below 2.5V on any Cell
 - > Over- charge current (irreversible)
 - > Over-discharge current
 - > Short circuit
 - > Enters sleep mode at low voltage (any cell)

Current Breaker and Burst Vent

- Current breaker physically opens circuit at 4 to 9
 Bars Pressure
 - > Cannot be Reset
- Burst vent opens at 11 to 12 bars of pressure
 - > Cannot be Reset

MP and D cells performances

Protection Circuit

- Customized to Each Battery Pack but based on appropriate values
- Monitor cells and opens circuit if it detects:
 - > Over Voltage above 4.25 V on any Cell
 - > Over Discharge below 2.5V on any Cell
 - > Over- charge current (irreversible)
 - > Over-discharge current
 - > Short circuit
 - > Enters sleep mode at low voltage (any cell)

Three Layer Separator

- Polyethylene layer: melts at 130 °C
 - > Shuts off all electrochemical activity
- Polypropylene layer: melts at 165 °C
 - > maintains a rigid structure between electrodes
- Laminated PP / PE / PP combines both
 - > Shutdown feature with polyethylene
 - > Mechanical Integrity with polypropylene
- Thickness = 26 microns
- Porosity = 40 %

Overcharge Circuit Breaker Safety Feature

Overcharge Circuit Breaker Safety Feature

Battery Design Terminology

- Series -Cells connected to + to to +. . .
 - > V=V/cell X Qty of Cells in String: Ex. 3 LiSO2 cells in series=3V x 3 = 9V; 3 Alkaline cells in series=1.5V x 3=4.5V
 - > Current(I) same in all cells in series string
 - > Capacity(Ah) = capacity of one cell in string
 - > Energy(Wh)=Capacity in Ah x V

Battery Design Terminology

- Parallel=Cells(or Cell Series Strings) connected with + to + and - to -
 - > V=V/cell(or cell string)
 - > Total Current(I)=Current of each cell(cell string) x qty cells(strings) in parallel
 - > Total Capacity(Ah) = capacity of one cell x qty cells(strings) in parallel
 - > Energy(Wh)= Total Capacity in Ah x V

Battery Design Terminology

- Why Parallel vs Series?
 - > High Current Requirement
 - Divides current by no. parallel legs=multiplies total current capability by no parallel legs
 - > High Capacity Requirement
 - Multiplies Ah capacity by no. parallel legs
- What Are Downsides of Parallel Config.?
 - > Cannot test individual strings when connected internally
 - > Balancing challenge
 - > Special End of Life Phenomena
 - > Voltage drop on diodes

Battery Configuration Nomenclature

Battery Configuration: aSbP-Cell Type

a=qty cells connected in series; b= qty cells in parallel

Battery Design Nomenclature

Battery Configuration: aS1P-Cell Type/n

a=qty cells connected in series; n=qty duplicate strings

Design

- Standard Lilon Battery Design
 - > Resettable Protection Circuit
 - Overall overcurrent
 - Overall over temperature
 - Over/under voltage at cell level
- Considerations
 - > Application/Use
 - Cyclic usage(charge use recharge)
 - Back up power(charged ready for power as req'd)
 - > Power/environmental
 - High power/high energy
 - Long life/high cycle life
 - Intermittent usage/storage
 - > Temperature operation: charging/discharging

Cost Considerations

- Features
 - > OTS circuits simple design
 - > Bells/whistles
 - Smart circuits
 - Fuel gage
 - > Finish
 - Soft Pack(PVC Shrink)
 - Hard Case
 - Metal (Expensive per piece cost)
 - Plastic (Lower per piece cost; costly tooling)
 - > Connector
 - > Special Agency Qualifications

Lilon Battery with 4-cell Protection Modules

8s2p Configuration

Lilon Battery with Individual Cell Circuits

